If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2+1320x+450=0
a = 40; b = 1320; c = +450;
Δ = b2-4ac
Δ = 13202-4·40·450
Δ = 1670400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1670400}=\sqrt{57600*29}=\sqrt{57600}*\sqrt{29}=240\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1320)-240\sqrt{29}}{2*40}=\frac{-1320-240\sqrt{29}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1320)+240\sqrt{29}}{2*40}=\frac{-1320+240\sqrt{29}}{80} $
| -5=3x+4=10 | | 5=h+77/3 | | x+7/12=1 | | 10+7.1n=4+7.4n | | 8x+7-4x=6+3x-4 | | 2x=22 | | k/5+24=33 | | 2a+10|=6 | | 4z+22=90 | | -90-6t=12t+54 | | 10x+39=4x+3 | | 2n2+5n+7=0 | | −16x^2−4x+6=0 | | 4p^2+5p-21=0 | | x-7=234 | | 7×+11y=8 | | x-7=234 | | 10x+2=15x^2 | | 2x=180°−48° | | -5y-1=4y-7 | | 6(m+11=96 | | 3-(0.25x)=(-0.5x)+9 | | 0.10(y-3)+0.20y=0.06y-1.2 | | t/6+73=81 | | 154/c=2 | | 3-(0.25x)=-0.5x9 | | 4(2y-10)=4 | | 5(2x+8)=-26+46 | | 2(x+10)+7x=9x | | 90=20x+10 | | 3z2−12z=0 | | 4x=0+6 |